12,240 research outputs found

    Extended 2d generalized dilaton gravity theories

    Full text link
    We show that an anomaly-free description of matter in (1+1) dimensions requires a deformation of the 2d relativity principle, which introduces a non-trivial center in the 2d Poincare algebra. Then we work out the reduced phase-space of the anomaly-free 2d relativistic particle, in order to show that it lives in a noncommutative 2d Minkowski space. Moreover, we build a Gaussian wave packet to show that a Planck length is well-defined in two dimensions. In order to provide a gravitational interpretation for this noncommutativity, we propose to extend the usual 2d generalized dilaton gravity models by a specific Maxwell component, which gauges the extra symmetry associated with the center of the 2d Poincare algebra. In addition, we show that this extension is a high energy correction to the unextended dilaton theories that can affect the topology of space-time. Further, we couple a test particle to the general extended dilaton models with the purpose of showing that they predict a noncommutativity in curved space-time, which is locally described by a Moyal star product in the low energy limit. We also conjecture a probable generalization of this result, which provides a strong evidence that the noncommutativity is described by a certain star product which is not of the Moyal type at high energies. Finally, we prove that the extended dilaton theories can be formulated as Poisson-Sigma models based on a nonlinear deformation of the extended Poincare algebra.Comment: 21 pages, IOP LaTeX2e preprint classfile, Improved discussions, Minor corrections, More didactic, More self-contained, New results concerning noncommutativity in curved space-time, Accepted for publication in Classical and Quantum Gravity on 02 Jul 200

    Casimir Densities for a Massive Fermionic Quantum Field in a Global Monopole Background with Spherical Boundary

    Full text link
    We investigate the vacuum expectation value of the energy-momentum tensor associated with a massive fermionic field obeying the MIT bag boundary condition on a spherical shell in the global monopole spacetime. The asymptotic behavior of the vacuum densities is investigated near the sphere center and surface, and at large distances from the sphere. In the limit of strong gravitational field corresponding to small values of the parameter describing the solid angle deficit in global monopole geometry, the sphere-induced expectation values are exponentially suppressed.Comment: 8 pages, 4 figures, 6th Alexander Friedmann International Seminar on Gravitation and Cosmolog

    Vacuum polarization by topological defects in de Sitter spacetime

    Full text link
    In this paper we investigate the vacuum polarization effects associated with a massive quantum scalar field in de Sitter spacetime in the presence of gravitational topological defects. Specifically we calculate the vacuum expectation value of the field square, . Because this investigation has been developed in a pure de Sitter space, here we are mainly interested on the effects induced by the presence of the defects.Comment: Talk presented at the 1st. Mediterranean Conference on Classical and Quantum Gravity (MCCQG

    Nonplanar integrability at two loops

    Full text link
    In this article we compute the action of the two loop dilatation operator on restricted Schur polynomials that belong to the su(2) sector, in the displaced corners approximation. In this non-planar large N limit, operators that diagonalize the one loop dilatation operator are not corrected at two loops. The resulting spectrum of anomalous dimensions is related to a set of decoupled harmonic oscillators, indicating integrability in this sector of the theory at two loops. The anomalous dimensions are a non-trivial function of the 't Hooft coupling, with a spectrum that is continuous and starting at zero at large N, but discrete at finite N.Comment: version to appear in JHE
    • 

    corecore